Theorems and Problems in Functional Analysis
A Paperback edition by A. A. Kirillov and A. D. Gvishiani in English (Dec 13, 2011)
$90.39 + FREE delivery
Print on demand

FREE delivery to United States in 917 working days

Short Description: Even the simplest mathematical abstraction of the phenomena of reality the real linecan be regarded from different points of view by different mathematical disciplines. For... Read more
Product Description
Even the simplest mathematical abstraction of the phenomena of reality the real linecan be regarded from different points of view by different mathematical disciplines. For example, the algebraic approach to the study of the real line involves describing its properties as a set to whose elements we can apply" operations," and obtaining an algebraic model of it on the basis of these properties, without regard for the topological properties. On the other hand, we can focus on the topology of the real line and construct a formal model of it by singling out its" continuity" as a basis for the model. Analysis regards the line, and the functions on it, in the unity of the whole system of their algebraic and topological properties, with the fundamental deductions about them obtained by using the interplay between the algebraic and topological structures. The same picture is observed at higher stages of abstraction. Algebra studies linear spaces, groups, rings, modules, and so on. Topology studies structures of a different kind on arbitrary sets, structures that give mathe matical meaning to the concepts of a limit, continuity, a neighborhood, and so on. Functional analysis takes up topological linear spaces, topological groups, normed rings, modules of representations of topological groups in topological linear spaces, and so on. Thus, the basic object of study in functional analysis consists of objects equipped with compatible algebraic and topological structures.
Theorems and Problems in Functional Analysis Paperback edition by A. A. Kirillov
Product Details
Product Specification
 Author
 A. A. Kirillov
 Translated by
 H. H. McFaden
 Author
 A. D. Gvishiani
 ISBN13
 9781461381556
 Series
 Problem Books in Mathematics
 Format
 Paperback,
 Publisher
 SpringerVerlag New York Inc.
 Publication date
 Dec 13, 2011
 Edition
 Softcover reprint of the original 1st ed. 1982
 Pages
 347
 Product dimensions
 155 x 235 x 19mm
 Weight
 544g
Theory. I Concepts from Set Theory and Topology. 1. Relations. The Axiom of Choice and Zorn's Lemma. 2. Completions. 3. Categories and Functors. II Theory of Measures and Integrals.. 1. Measure Theory. 1. Algebras of Sets. 2. Extension of a Measure. 3. Constructions of Measures. 2. Measurable Functions. 1. Properties of Measurable Functions. 2. Convergence of Measurable Functions. 3. Integrals. 1. The Lebesgue Integral. 2. Functions of Bounded Variation and the LebesqueStieltjes Integral. 3. Properties of the Lebesgue Integral. III Linear Topological Spaces and Linear Operators. 1. General Theory. 1. Topology, Convexity, and Seminorms. 2. Dual Spaces. 3. The HahnBanach Theorem. 4. Banach Spaces. 2. Linear Operators. 1. The Space of Linear Operators. 2. Compact Sets and Compact Operators. 3. The Theory of Fredholm Operators. 3. Function Spaces and Generalized Functions. 1. Spaces of Integrable Functions. 2. Spaces of Continuous Functions. 3. Spaces of Smooth Functions. 4. Generalized Functions. 5. Operations on Generalized Functions. 4. Hilbert Spaces. 1. The Geometry of Hilbert Spaces. 2. Operators on a Hilbert Space. IV The Fourier Transformation and Elements of Harmonic Analysis. 1. Convolutions on an Abelian Group. 1. Convolutions of Test Functions. 2. Convolutions of Generalized Functions. 2. The Fourier Transformation. 1. Characters on an Abelian Group. 2. Fourier Series. 3. The Fourier Integral. 4. Fourier Transformation of Generalized Functions. V The Spectral Theory of Operators. 1. The Functional Calculus. 1. Functions of Operators in a FiniteDimensional Space.. 2. Functions of Bounded Selfadjoint Operators. 3. Unbounded Selfadjoint Operators. 2. Spectral Decomposition of Operators. 1. Reduction of an Operator to the Form of Multiplication by a Function. 2. The Spectral Theorem. Problems. I Concepts from Set Theory and Topology. 1. Relations. The Axiom of Choice and Zorn's Lemma. 2. Completions. 3. Categories and Functors. II Theory of Measures and Integrals.. 1. Measure Theory. 1. Algebras of Sets. 2. Extension of a Measure. 3. Constructions of Measures. 2. Measurable Functions. 1. Properties of Measurable Functions. 2. Convergence of Measurable Functions. 3. Integrals. 1. The Lebesgue Integral. 2. Functions of Bounded Variation and the LebesqueStieltjes Integral. 3. Properties of the Lebesgue Integral. III Linear Topological Spaces and Linear Operators. 1. General Theory. 1. Topology, Convexity, and Seminorms. 2. Dual Spaces. 3. The HahnBanach Theorem. 4. Banach Spaces. 2. Linear Operators. 1. The Space of Linear Operators. 2. Compact Sets and Compact Operators. 3. The Theory of Fredholm Operators. 3. Function Spaces and Generalized Functions. 1. Spaces of Integrable Functions. 2. Spaces of Continuous Functions. 3. Spaces of Smooth Functions. 4. Generalized Functions. 5. Operations on Generalized Functions. 4. Hilbert Spaces. 1. The Geometry of Hilbert Spaces. 2. Operators on a Hilbert Space. IV The Fourier Transformation and Elements of Harmonic Analysis. 1. Convolutions on an Abelian Group. 1. Convolutions of Test Functions. 2. Convolutions of Generalized Functions. 2. The Fourier Transformation. 1. Characters on an Abelian Group. 2. Fourier Series. 3. The Fourier Integral. 4. Fourier Transformation of Generalized Functions. V The Spectral Theory of Operators. 1. The Functional Calculus. 1. Functions of Operators in a FiniteDimensional Space.. 2. Functions of Bounded Selfadjoint Operators. 3. Unbounded Selfadjoint Operators. 2. Spectral Decomposition of Operators. 1. Reduction of an Operator to the Form of Multiplication by a Function. 2. The Spectral Theorem. Hints. I Concepts from Set Theory and Topology. 1. Relations. The Axiom of Choice and Zorn's Lemma. 2. Completions. 3. Categories and Functors. II Theory of Measures and Integrals.. 1. Measure Theory. 1. Algebras of Sets. 2. Extension of a Measure. 3. Constructions of Measures. 2. Measurable Functions. 1. Properties of Measurable Functions. 2. Convergence of Measurable Functions. 3. Integrals. 1. The Lebesgue Integral. 2. Functions of Bounded Variation and the LebesqueStieltjes Integral. 3. Properties of the Lebesgue Integral. III Linear Topological Spaces and Linear Operators. 1. General Theory. 1. Topology, Convexity, and Seminorms. 2. Dual Spaces. 3. The HahnBanach Theorem. 4. Banach Spaces. 2. Linear Operators. 1. The Space of Linear Operators. 2. Compact Sets and Compact Operators. 3. The Theory of Fredholm Operators. 3. Function Spaces and Generalized Functions. 1. Spaces of Integrable Functions. 2. Spaces of Continuous Functions. 3. Spaces of Smooth Functions. 4. Generalized Functions. 5. Operations on Generalized Functions. 4. Hilbert Spaces. 1. The Geometry of Hilbert Spaces. 2. Operators on a Hilbert Space. IV The Fourier Transformation and Elements of Harmonic Analysis. 1. Convolutions on an Abelian Group. 1. Convolutions of Test Functions. 2. Convolutions of Generalized Functions. 2. The Fourier Transformation. 1. Characters on an Abelian Group. 2. Fourier Series. 3. The Fourier Integral. 4. Fourier Transformation of Generalized Functions. V The Spectral Theory of Operators. 1. The Functional Calculus. 1. Functions of Operators in a FiniteDimensional Space.. 2. Functions of Bounded Selfadjoint Operators. 3. Unbounded Selfadjoint Operators. 2. Spectral Decomposition of Operators. 1. Reduction of an Operator to the Form of Multiplication by a Function. 2. The Spectral Theorem. List of Notation.
Categories
NonFiction Engineering, Technology & Mathematics Mathematics Calculus & Mathematical Analysis
Write a Review
Please sign in to write a review.
Login